Building Orientation and Post Processing of Ti6Al4V Produced by Laser Powder Bed Fusion Process
نویسندگان
چکیده
Laser powder bed fusion, particularly the selective laser melting (SLM), is an additive manufacturing (AM) technology used to produce near-net-shaped engineering components for biomedical applications, especially in orthopaedics. Ti6Al4V commonly producing orthopaedic implants using SLM because it has excellent mechanical qualities, a high level of biocompatibility, and corrosion resistance. However, main problems associated with this process are result its surface properties: be able promote cell attachment but, at same time, avoid bacteria colonization. Surface modification as post-processing technique provide items unique qualities that can improve their functionality performance particular working conditions. The goal work was analyse samples fabricated by different building directions relation plate (0° 45°) post-processed anodization passivation. results demonstrate how production post processes had impact on osteoblast attachment, mineralization, osseointegration over extended period time. Though treatment cytotoxic, biocompatibility as-built specimens after passivation confirmed. In addition, discovered effective increases mineralization these types 3D-printed surfaces.
منابع مشابه
Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing
The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone-implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modificatio...
متن کاملStudy of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion
Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions...
متن کاملInfluence of post-processing on Ti6Al4V lattice structures produced by Selective Laser Melting
Selective laser melting (SLM) is a novel technique being increasingly used for the production of porous structures with a high degree of precision and near net shape. These porous materials are finding their use in the biomedical industry for implants. In this thesis, the effect of post-processing using hot isostatic pressing (HIP) and surface modification techniques, such as chemical etching a...
متن کاملEffect of Process and Post-Process Conditions on the Mechanical Properties of an A357 Alloy Produced via Laser Powder Bed Fusion
A357 samples were realized by laser powder bed fusion (LPBF) on building platforms heated up to different temperatures. The effect of the preheating temperature and of the post processing heat treatment on the microstructure and the mechanical properties of the samples was studied. It was demonstrated that building platform heating can act as an in situ ageing heat treatment following the fast ...
متن کاملThermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST.
Measurement of the high-temperature melt pool region in the laser powder bed fusion (L-PBF) process is a primary focus of researchers to further understand the dynamic physics of the heating, melting, adhesion, and cooling which define this commercially popular additive manufacturing process. This paper will detail the design, execution, and results of high speed, high magnification in-situ the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of manufacturing and materials processing
سال: 2023
ISSN: ['2504-4494']
DOI: https://doi.org/10.3390/jmmp7010043